237 research outputs found

    Solid-State Effects on the Optical Excitation of Push-Pull Molecular J-Aggregates by First-Principles Simulations

    Get PDF
    J-aggregates are a class of low-dimensional molecular crystals which display enhanced interaction with light. These systems show interesting optical properties as an intense and narrow red-shifted absorption peak (J-band) with respect to the spectrum of the corresponding monomer. The need to theoretically investigate optical excitations in J-aggregates is twofold: a thorough first-principles description is still missing and a renewed interest is rising recently in understanding the nature of the J-band, in particular regarding the collective mechanisms involved in its formation. In this work, we investigate the electronic and optical properties of a J-aggregate molecular crystal made of ordered arrangements of organic push-pull chromophores. By using a time dependent density functional theory approach, we assess the role of the molecular packing in the enhancement and red shift of the J-band along with the effects of confinement in the optical absorption, when moving from bulk to low-dimensional crystal structures. We simulate the optical absorption of different configurations (i.e., monomer, dimers, a polymer chain, and a monolayer sheet) extracted from the bulk crystal. By analyzing the induced charge density associated with the J-band, we conclude that it is a longitudinal excitation, delocalized along parallel linear chains and that its overall red shift results from competing coupling mechanisms, some giving red shift and others giving blue shift, which derive from both coupling between transition densities and renormalization of the single-particle energy levels.Comment: This is the published version of the work, distributed under the terms of the ACS AuthorChoice licence https://pubs.acs.org/page/policy/authorchoice_termsofuse.htm

    Proposed alteration of images of molecular orbitals obtained using a scanning tunnelling microscope as a probe of electron correlation

    Full text link
    Scanning tunneling spectroscopy (STS) allows to image single molecules decoupled from the supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron-electron interaction. Here we demonstrate that the effect of electron correlation beyond mean field qualitatively alters the uncorrelated STS images. Our evidence is based on the ab-initio many-body calculation of STS images of planar molecules with metal centers. We find that many-body correlations alter significantly the image spectral weight close to the metal center of the molecules. This change is large enough to be accessed experimentally, surviving to molecule-substrate interactions.Comment: 27 pages including Supplemental Information. To appear in Physical Review Letter

    A classical picture of subnanometer junctions: an atomistic Drude approach to nanoplasmonics

    Full text link
    The description of optical properties of subnanometer junctions is particularly challenging. Purely classical approaches fail, because the quantum nature of electrons needs to be considered. Here we report on a novel classical fully atomistic approach, {\omega}FQ, based on the Drude model for conduction in metals, classical electrostatics and quantum tunneling. We show that {\omega}FQ is able to reproduce the plasmonic behavior of complex metal subnanometer junctions with quantitative fidelity to full ab initio calculations. Besides the practical potentialities of our approach for large scale nanoplasmonic simulations, we show that a classical approach, in which the atomistic discretization of matter is properly accounted for, can accurately describe the nanoplasmonics phenomena dominated by quantum effects.Comment: This article is licensed under a Creative Commons Attribution 3.0 Unported Licenc

    Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate

    Full text link
    The definition of plasmon at the microscopic scale is far from being understood. Yet, it is very important to recognize plasmonic features in optical excitations, as they can inspire new applications and trigger new discoveries by analogy with the rich phenomenology of metal nanoparticle plasmons. Recently, the concepts of plasmonicity index and the generalized plasmonicity index (GPI) have been devised as computational tools to quantify the plasmonic nature of optical excitations. The question may arise whether any strong absorption band, possibly with some sort of collective character in its microscopic origin, shares the status of plasmon. Here we demonstrate that this is not always the case, by considering a well-known class of systems represented by J-aggregates molecular crystals, characterized by the intense J band of absorption. By means of first-principles simulations, based on a many-body perturbation theory formalism, we investigate the optical properties of a J-aggregate made of push-pull organic dyes. We show that the effect of aggregation is to lower the GPI associated with the J-band with respect to the isolated dye one, which corresponds to a nonplasmonic character of the electronic excitations. In order to rationalize our finding, we then propose a simplified one-dimensional theoretical model of the J-aggregate. A useful microscopic picture of what discriminates a collective molecular crystal excitation from a plasmon is eventually obtained.Comment: Published by ACS under ACS AuthorChoice licens

    Interplay between Intra- and Intermolecular Charge Transfer in the Optical Excitations of J-Aggregates

    Full text link
    In a first-principles study based on density functional theory and many-body perturbation theory, we address the interplay between intra- and intermolecular interactions in a J-aggregate formed by push-pull organic dyes by investigating its electronic and optical properties. We find that the most intense excitation dominating the spectral onset of the aggregate, i.e., the J-band, exhibits a combination of intramolecular charge transfer, coming from the push-pull character of the constituting dyes, and intermolecular charge transfer, due to the dense molecular packing. We also show the presence of a pure intermolecular charge-transfer excitation within the J-band, which is expected to play a relevant role in the emission properties of the J-aggregate. Our results shed light on the microscopic character of optical excitations of J-aggregates and offer new perspectives to further understand the nature of collective excitations in organic semiconductors.Comment: published under ACS Authorchoice licens

    Predicting signatures of anisotropic resonance energy transfer in dye-functionalized nanoparticles

    Full text link
    Resonance energy transfer (RET) is an inherently anisotropic process. Even the simplest, well-known F\"orster theory, based on the transition dipole-dipole coupling, implicitly incorporates the anisotropic character of RET. In this theoretical work, we study possible signatures of the fundamental anisotropic character of RET in hybrid nanomaterials composed of a semiconductor nanoparticle (NP) decorated with molecular dyes. In particular, by means of a realistic kinetic model, we show that the analysis of the dye photoluminescence difference for orthogonal input polarizations reveals the anisotropic character of the dye-NP RET which arises from the intrinsic anisotropy of the NP lattice. In a prototypical core/shell wurtzite CdSe/ZnS NP functionalized with cyanine dyes (Cy3B), this difference is predicted to be as large as 75\% and it is strongly dependent in amplitude and sign on the dye-NP distance. We account for all the possible RET processes within the system, together with competing decay pathways in the separate segments. In addition, we show that the anisotropic signature of RET is persistent up to a large number of dyes per NP.Comment: 9 pages, 5 figures. Supplementary information available at http://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra22433d/unauth#!divAbstrac

    Enhanced light-harvesting of protein-pigment complexes assisted by a quantum dot antenna

    Full text link
    We predict the enhanced light harvesting of a protein-pigment complex when assembled to a quantum dot (QD) antenna. Our prototypical nanoassembly setup is composed of a Fenna-Mattews-Olson system hosting 8 Bacteriochlorophyll (BChl) a dyes, and a near-infrared emitting CdSex_xTe(1−x)_{(1-x)}/ZnS alloy-core/shell nanocrystal. BChl a has two wide windows of poor absorption in the green and orange-red bands, precisely where most of the sunlight energy lies. The selected QD is able to collect sunlight efficiently in a broader band and funnel its energy by a (non-radiative) F\"orster resonance energy transfer mechanism to the dyes embedded in the protein. By virtue of the coupling between the QD and the dyes, the nanoassembly absorption is dramatically improved in the poor absorption window of the BChl a.Comment: 5 pages, 3 figures, presented in the NANOFIM 2018 conference in Mexico Cit

    Visualizing electron correlation by means of ab-initio scanning tunneling spectroscopy images of single molecules

    Full text link
    Scanning tunneling microscopy (STM) has been a fundamental tool to characterize many-body effects in condensed matter systems, from extended solids to quantum dots. STM of molecules decoupled from the supporting conductive substrate has the potential to extend STM characterization of many body effects to the molecular world as well. In this article, we describe a many-body tunneling theory for molecules decoupled from the STM substrate, and we report on the use of standard quantum chemical methods to calculate the quantities necessary to provide the 'correlated' STM molecular image. The developed approach has been applied to eighteen different molecules, to explore the effects of their chemical nature and of their substituents, as well as to verify the possible contribution by transition metal centers. Whereas the bulk of calculations have been performed with CISD because of the computational cost, some tests have been also performed with the more accurate CCSD method to quantify the importance of the computational level on many-body STM images. We have found that correlation induces a remarkable squeezing of the images, and that correlated images are not derived from Hartree-Fock HOMO or LUMO alone, but include contributions from other orbitals as well. Although correlation effects are too small to be resolved by present STM experiments for the studied molecules, our results provide hints for seeking out other species with larger, and possibly experimentally detectable, correlation effects.Comment: Main text + Supplemental materia

    Equation of Motion for the Solvent Polarization Apparent Charges in the Polarizable Continuum Model: Application to Time-Dependent CI

    Full text link
    The dynamics of the electrons for a molecule in solution is coupled to the dynamics of its polarizable environment, i.e., the solvent. To theoretically investigate such electronic dynamics, we have recently developed equations of motion (EOM) for the apparent solvent polarization charges that generate the reaction field in the Polarizable Continuum Model (PCM) for solvation and we have coupled them to a real-time time-dependent density functional theory (RT TDDFT) description of the solute [Corni et al. J. Phys. Chem. A 119, 5405 (2014)]. Here we present an extension of the EOM-PCM approach to a Time-Dependent Configuration Interaction (TD CI) description of the solute dynamics, which is free from the qualitative artifacts of RT TDDFT in the adiabatic approximation. As tests of the developed approach, we investigate the solvent Debye relaxation after an electronic excitation of the solute obtained either by a π\pi pulse of light or by assuming the idealized sudden promotion to the excited state. Moreover, we present EOM for the Onsager solvation model and we compare the results with PCM. The developed approach provides qualitatively correct real-time evolutions and is promising as a general tool to investigate the electron dynamics elicited by external electromagnetic fields for molecules in solution.Comment: This is the final peer-reviewed manuscript accepted for publication in The Journal of Chemical Physics. Copyright by AIP, the final published version can be found at http://scitation.aip.org/content/aip/journal/jcp/146/6/10.1063/1.497562
    • 

    corecore